Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The SNEWS 2.0 alert software for the coincident detection of neutrinos from core-collapse supernovaeAbstract The neutrino signal from the next galactic core-collapse supernova will provide an invaluable early warning of the explosion. By combining the burst trigger from several neutrino detectors, the location of the explosion can be triangulated minutes to hours before the optical emission becomes visible, while also reducing the rate of false-positive triggers. To enable multi-messenger follow-up of nearby supernovae, the SuperNova Early Warning System 2.0 (SNEWS 2.0) will produce a combined alert using a global network of neutrino detectors. This paper describes the trigger publishing and alert formation framework of the SNEWS 2.0 network. The framework is built on the HOPSKOTCH publish-subscribe system to easily incorporate new detectors into the network, and it implements a coincidence system to form alerts and estimate a false-positive rate for the combined triggers. The paper outlines the structure of the SNEWS 2.0 software and the initial testing of coincident signals.more » « less
-
CONTEXT Engineering education is an interdisciplinary research field where scholars are commonly embedded within the context they study. Engineering Education Scholars (EES), individuals who define themselves by having expertise associated with both engineering education research and practice, inhabit an array of academic positions, depending on their priorities, interests, and desired impact. These positions include, but are not limited to, traditional tenure-track faculty positions, professional teaching or research positions, and positions within teaching and learning centers or other centers. EES also work in diverse institutional contexts, including engineering disciplinary departments, first-year programs, and engineering education departments, which further vary their roles. PURPOSE OR GOAL The purpose of this preliminary research study is to better understand the roles and responsibilities of early-career EES. This knowledge will enable PhD programs to better prepare engineering education graduates to more intentionally seek positions, which is especially important given the growing number of engineering education PhD programs. We address our purpose by exploring the following research question: How can we describe the diversity of academic or faculty roles early-career EES undertake? APPROACH OR METHODOLOGY/METHODS We implemented an explanatory sequential mixed-methods study starting with a survey (n=59) to better understand the strategic actions of United States-based early-career EES. We used a clustering technique to identify clusters of participants based on these actions (e.g., teaching focused priorities, research goals). We subsequently recruited 14 survey participants, representing each of the main clusters, to participate in semi-structured interviews. Through the interviews, we sought to gain a more nuanced understanding of each participant’s actions in the contexts of their roles and responsibilities. We analyzed each interview transcript to develop memos providing an overview of each early-career EES role description and then used a cross case analysis where the unit of analysis was a cluster. ACTUAL OUTCOMES Five main clusters were identified through our analysis, with three representing primarily research-focused day-to-day responsibilities and two representing primarily teaching-focused day-to-day responsibilities. The difference between the clusters was influenced by the institutional context and the areas in which EES selected to focus their roles and responsibilities. These results add to our understanding of how early-career EES enact their roles within different institutional contexts and positions. CONCLUSIONS/RECOMMENDATIONS/SUMMARY This work can be used by graduate programs around the world to better prepare their engineering education graduates for obtaining positions that align with their goals and interests. Further, we expect this work to provide insight to institutions so that they can provide the support and resources to enable EES to reach their desired impact within their positions.more » « less
-
CONTEXT Engineering education is an interdisciplinary research field where scholars are commonly embedded within the context they study. Engineering Education Scholars (EES), individuals who define themselves by having expertise associated with both engineering education research and practice, inhabit an array of academic positions, depending on their priorities, interests, and desired impact. These positions include, but are not limited to, traditional tenure-track faculty positions, professional teaching or research positions, and positions within teaching and learning centers or other centers. EES also work in diverse institutional contexts, including engineering disciplinary departments, first-year programs, and engineering education departments, which further vary their roles. PURPOSE OR GOAL The purpose of this preliminary research study is to better understand the roles and responsibilities of early-career EES. This knowledge will enable PhD programs to better prepare engineering education graduates to more intentionally seek positions, which is especially important given the growing number of engineering education PhD programs. We address our purpose by exploring the following research question: How can we describe the diversity of academic or faculty roles early-career EES undertake? APPROACH OR METHODOLOGY/METHODS We implemented an explanatory sequential mixed-methods study starting with a survey (n=59) to better understand the strategic actions of United States-based early-career EES. We used a clustering technique to identify clusters of participants based on these actions (e.g., teaching focused priorities, research goals). We subsequently recruited 14 survey participants, representing each of the main clusters, to participate in semi-structured interviews. Through the interviews, we sought to gain a more nuanced understanding of each participant’s actions in the contexts of their roles and responsibilities. We analyzed each interview transcript to develop memos providing an overview of each early-career EES role description and then used a cross case analysis where the unit of analysis was a cluster. ACTUAL OUTCOMES Five main clusters were identified through our analysis, with three representing primarily research-focused day-to-day responsibilities and two representing primarily teaching-focused day-to-day responsibilities. The difference between the clusters was influenced by the institutional context and the areas in which EES selected to focus their roles and responsibilities. These results add to our understanding of how early-career EES enact their roles within different institutional contexts and positions. CONCLUSIONS/RECOMMENDATIONS/SUMMARY This work can be used by graduate programs around the world to better prepare their engineering education graduates for obtaining positions that align with their goals and interests. Further, we expect this work to provide insight to institutions so that they can provide the support and resources to enable EES to reach their desired impact within their positions.more » « less
-
Additions of nitrogen were made to ERNiCr-3 (FM 82) weld metal to investigate the effect on weld metal microstructure and solidification cracking susceptibility. Weld samples were prepared with different argon-nitrogen shielding gas mixtures to produce nitrogen variations in the weld metal. The cast pin tear test (CPTT) was then used to evaluate solidification cracking susceptibility as a function of weld metal nitrogen content. Phase fraction and composition of constituents in the final solidification microstructure were characterized via optical and electron microscopy. Thermodynamic (Scheil) calculations were performed to determine the phase formation during solidification, associated solidification path, and solidification temperature range. Solidification cracking susceptibility was found to increase significantly with increasing nitrogen content. The overall amount of second phase in the solidified microstructure increased when nitrogen was added to the weld metal. Small skeletal constituents in the interdendritic regions, primarily Nb-rich carbides (NbC), were more frequently observed with increasing weld metal nitrogen content. Larger cuboidal Ti-rich nitrides (TiN) and carbonitrides (Ti, Nb)(N, C) were found only when nitrogen was added to the weld metal. Their location in dendrite core regions indicates formation during an earlier stage of the solidification process. Scheil calculations confirmed the strong effect of nitrogen additions on the amount and sequence of phase formation during solidification of ERNiCr-3 weld metal. High nitrogen levels ( 100 ppm) facilitate primary nitride formation prior to the solidification of the gamma () dendrites, and increase the amount of phase constituents in the solidification microstructure. The presence of nitrogen also shifts the start of the eutectic /NbC formation at the end of solidification to lower temperatures, which results in an increase in the solidification temperature range. This occurs at much lower nitrogen levels ( 25 ppm) and correlates with the observed increase in solidification cracking susceptibility.more » « less
-
Alongside the continued evolution of the field of engineering education, the number of early career faculty members who identify as members of the discipline continues to increase. This growth has resulted in a new wave of roles, titles, and experiences for engineering education researchers, many of which have yet to be explored and understood. To address this gap, our research team is investigating the ways in which early career engineering education faculty are able to achieve impact in their current roles. Our aim is to provide insights on the ways in which these researchers can have new and evolving forms of impact within the engineering education field. The work presented herein explores the transition experiences of our research team, consisting of six early-career faculty, and the ways in which we experience agency at the individual, institutional, and field and societal levels. Doing so is necessary to consider the diverse backgrounds, visions, goals, plans, and commitments of early career faculty members. Guided by two qualitative research methodologies: collaborative inquiry and collaborative autoethnography, we are able to explore our lived experiences and respective academic cultures through iterative cycles of reflection and action towards agency. The poster presented will provide an update on our NSF RFE work through Phase 1 of our two phase investigation. Thus far the investigation has involved analysis of our reflections from the first two years of our faculty roles to identify critical incidents within the early career transition and development of our identities as faculty members. Additionally, we have collected reflective data to understand each of our goals, relevant aspects of our identity and desired areas of impact. Analysis of the transition has resulted in new insights on the aspects of transition, focusing on types of impactful situations, and the supports and strategies that are utilized. Analysis has begun to explore the role of identity on each members desired areas of impact and their ability to have impact. Data will also be presented from a survey of near peers, providing insight into the ways in which each early career engineering education faculty believe they are able to and desire to have impact in their current position. The collective analysis around the transition into a faculty role, strategic actions of new faculty, desired impact areas, and faculty identity will play a role in the development of our conceptual model of early career faculty agency. Additionally, this analysis provides the groundwork for phase two of our study, where we will seek to place the experiences of our group within the context of the larger community of early career engineering education faculty.more » « less
-
Alongside the continued evolution of the field of engineering education, the number of early career faculty members who identify as members of the discipline continues to increase. This growth has resulted in a new wave of roles, titles, and experiences for engineering education researchers, many of which have yet to be explored and understood. To address this gap, our research team is investigating the ways in which early career engineering education faculty are able to achieve impact in their current roles. Our aim is to provide insights on the ways in which these researchers can have new and evolving forms of impact within the engineering education field. The work presented herein explores the transition experiences of our research team, consisting of six early-career faculty, and the ways in which we experience agency at the individual, institutional, and field and societal levels. Doing so is necessary to consider the diverse backgrounds, visions, goals, plans, and commitments of early career faculty members. Guided by two qualitative research methodologies: collaborative inquiry and collaborative autoethnography, we are able to explore our lived experiences and respective academic cultures through iterative cycles of reflection and action towards agency. The poster presented will provide an update on our NSF RFE work through Phase 1 of our two phase investigation. Thus far the investigation has involved analysis of our reflections from the first two years of our faculty roles to identify critical incidents within the early career transition and development of our identities as faculty members. Additionally, we have collected reflective data to understand each of our goals, relevant aspects of our identity and desired areas of impact. Analysis of the transition has resulted in new insights on the aspects of transition, focusing on types of impactful situations, and the supports and strategies that are utilized. Analysis has begun to explore the role of identity on each members desired areas of impact and their ability to have impact. Data will also be presented from a survey of near peers, providing insight into the ways in which each early career engineering education faculty believe they are able to and desire to have impact in their current position. The collective analysis around the transition into a faculty role, strategic actions of new faculty, desired impact areas, and faculty identity will play a role in the development of our conceptual model of early career faculty agency. Additionally, this analysis provides the groundwork for phase two of our study, where we will seek to place the experiences of our group within the context of the larger community of early career engineering education faculty.more » « less
An official website of the United States government

Full Text Available